News

Blowfly genome map will show new pathways to sheep flystrike solutions

Sheep Central, June 26, 2015

Blowfly1-UniMelbJune26-15SOLUTIONS to flystrike via a vaccine or new insecticides to combat Australia’s sheep blowfly are a big step closer after the decoding of the insect’s genome by University of Melbourne researchers.

Blowflies are estimated are estimated to cost Australia’s sheep industry about $280 million each year from flystrike, with producers currently battling the pest with genetics, costly chemicals and animal welfare-sensitive methods such as surgical mulesing.

But now all 14,544 genes of the blowfly (Lucilia cuprina) have been identified by an international research team, led by the University of Melbourne, in partnership with the Baylor College of Medicine Human Genome Sequencing Center, and funded by the United States National Human Genome Research Institute and Australian Wool Innovation.

Around 2000 genes not seen before in any other organism were discovered while decoding the blowfly genome. These genes can now be investigated as potential drug and vaccine targets, researcher said.

Now ‘limitless potential’ for fighting blowflies

University of Melbourne's lead blowfly researcher Dr Clare Anstead

University of Melbourne’s lead blowfly researcher Dr Clare Anstead

Lead researcher on the project, Dr Clare Anstead, of the University of Melbourne Faculty of Veterinary and Agricultural Sciences, said the genome map had ‘limitless potential’ for fighting the blowfly at home and abroad.

“Lucilia is a beautiful name, but it is an extremely nasty parasite; the sheep is literally eaten alive –  It’s horrific.

“The Lucilia species are responsible for more than 90 percent of flystrike in Australia and New Zealand,” she said.

Dr Anstead said the fly is especially good at evolving to resist insecticides.

“There has been a massive amount of research into prevention and control of flystrike, from developing a vaccine, new insecticides, to targeting weak areas of the fly, and even biological control with bacteria and fungi.

“But none are completely effective,” she said.

“It’s exciting that we have now identified more than 2000 genes that have never been seen in any other animal or plant.

“Some of these ‘orphan’ genes hold the key to the parasitic relationship between the blowfly and the sheep,” Dr Anstead said.

“They could be targeted to develop a completely new method of control.”

Effective interventions need an understanding of fly biology

University of Melbourne Professor Robin Gasser

University of Melbourne Professor Robin Gasser

University of Melbourne Professor Robin Gasser oversaw the research and said: “If you want to develop effective interventions against this fly, you need to know it inside out and understand its biology, starting by identifying all the genes.

“And, we have done that.”

Professor Phil Batterham, at the University of Melbourne School of Biosciences, said the genome work enabled the prediction of gene mutation in flies that could make them resistant to chemicals.

“Which means we may be able to avoid the type of crisis that the medical community now faces with antibiotic resistance in bacteria.

“The next step is to isolate the parasite’s ‘Achilles’ heel’ – genes that allow the parasitic interaction between the maggots and the sheep,” Prof Batterham said.

“A vaccine that targets this gene could stop flystrike in its earliest stages.

“This vaccine could access vital proteins in the maggots, which would kill them,” he said.

“Alternatively, genomic-guided drug discovery means we could develop insecticides that selectively kill fly maggots, but do not harm the host animal.”

Blowfly’s sense of smell will be investigated

Professor Phil Batterham, at the University of Melbourne School of Biosciences.

Professor Phil Batterham, at the University of Melbourne School of Biosciences.

To decode the genome, researchers used a combination of supercomputing and bio-informatic techniques to handle huge reams of data. They aim to use a powerful new technology called CRISPR to investigate switching off a number of genes, including the gene responsible for the blowfly’s extraordinary sense of smell.

“Flies have an extremely sophisticated sense of smell.

“They can smell the difference between sheep that are resistant to the fly and those that aren’t,” Prof Batterham said.

“We want to produce a fly that cannot smell, so that we can understand how important that sense of smell is in the initiation of flystrike.”

The research was published today in Nature Communications and provides insights into the fly’s molecular biology, how it interacts with the sheep’s biology and, importantly, shows its potential to develop insecticide resistance.

Blowfly maggots live on the skin of sheep and invade open wounds, where they feed on tissue and cause severe skin disease, known as myiasis or flystrike. It is an aggressive and notoriously difficult pest to control.

Lucilia cuprina is one of 30 insect species to have genome sequences generated at the Baylor College of Medicine Human Genome Sequencing Centre as part of a pilot project for the genome analysis of some 5000 arthropod species of medical, scientific, economic and agricultural importance.

Source: University of Melbourne.

HAVE YOUR SAY

Your email address will not be published. Required fields are marked *

Your comment will not appear until it has been moderated.
Contributions that contravene our Comments Policy will not be published.

Comments

Get Sheep Central's news headlines emailed to you -
FREE!